

U.S. FREEZE / THAW ZONE MAP

Annual average number of days temperatures fall below 32 °F (0 °C)

What is Cold Weather?

Period of 3 consecutive days

Average daily temperature is $<40^{\circ}F$ Air temperature is not $>50^{\circ}F$ for 1/2 of 24 hours

Placement control

Prevent damage from freezing at early stages

Limit rapid temperature changes

Provide protection consistent with serviceability

of structure

Some EXCITING, Completely TECHNICAL stuff!

- Slows Cement Hydration
 - A 10°F drop delays setting approximately 2–2½ hours
 - EXAMPLE If the set time is 6 hours at 75° F, it will be over 10 hours at 55° F
 - Concrete needs to...
 - (1) Set Plastic to Solid State
 - (2) Harden Gains Strength

- Slows Cement Hydration
- Slows Initial Setting Time
 - Concrete should be protected from freezing at an early age for the first 48 hours – until it achieves a compressive strength of at least 500 psi
 - Up to 50% strength reduction can occur if concrete freezes before reaching 500 psi

- Slows Cement Hydration
- Slows Initial Setting Time
- Slows Overall Strength Gain
 - Compressive strength development will be delayed up to 60% in cold weather...
 - Meaning, if design strength is 3000 psi in 7 days @ 75°F (for 4000 psi mix), in cold weather, UNPROTECTED, compressive strength at 7 days could be as low as 1200 psi.

- Slows Cement Hydration
- Slows Initial Setting Time
- Slows Overall Strength Gain
- Danger of Freezing
 - Water begins to freeze in capillaries of concrete at 28°F (air temperature)
 - Water expands up to 9% of its volume when it freezes, causing cracks in the concrete matrix
 - Use an air-entrained concrete mix

Before Placement

- Materials
 - Use of an accelerator
 - Water reducers?
- Minimize water in the mix
- Heated aggregates and water (NEVER exceed 140°F)
- Mix design
 - Use air entrained concrete
 - Use a type III cement or High-Early (HE) strength cement
 - Use additional 100-200 LB/cy add type I cement

Chemical Accelerators

Use with caution/understanding

Non Chloride (or Corrosive) Accelerators (NCA)

- Required in reinforced concrete or by spec
- Follow manufacturer's dosage guide

Calcium Chloride (CC)

- Only in non-reinforced concrete
- Can increase potential for corrosion and sulfate attack
- Speeds hydration, which increases heat

Placement Conditions

- Schedule appropriately
- Place concrete at the lowest practical slump
- Remove snow, ice and frost from subgrade & contact surfaces (including reinforcing steel and forms)
- Insulate and/or heat subgrade and contact surfaces
 - Subgrade freezes deeper than the top inch exposed to weather
 - Control temperature of reinforcing and forms
- Use of maturity meters to monitor

Concrete should NEVER be placed on a frozen subgrade

What is wrong with these placements?

What should be expected after placement?

What other considerations should be made on-site?

What happened to the concrete at placement?

Will there be any long-term affects?

Curing Conditions and Time

- Provide protection immediately after concrete placement
- Don't allow concrete to freeze when saturated
- External heating source
- If dry heat is used, curing compound should be considered
- Don't water cure in the winter

Number 19th

Protection

- Cover concrete surfaces with insulated blankets, tarps, or straw covered with plastic sheeting to retain heat generated by hydration process
 - Corners & edges are most susceptible to heat loss
- Enclosures may be needed, depending on ambient and site conditions

Strength

On the worst days...

Quality Control and Assurance

- Initial curing of specimens
 - Location Where?
 - Storage **How?**
 - Temperature monitoringRange?
- Protection for field cured specimens
 - NOT for acceptance

It Takes Teamwork

- Plan ahead
- Be prepared
- Be concerned
- Schedule work
- Instruct and inspect

Conversation, not Confrontation!

Bottom Line

- A drop in concrete temperature of 20°F will DOUBLE the setting time.
- Plan, plan, plan

"I'm sure the contractor will understand"

No One...EVER!

Question?

JT Mesite, P.E.
CRMCA
jt@coloradocaa.org

Todd Andersen

Martin Marietta

todd.andersen@martinmarietta.com

